Dwork conjecture
WebSep 10, 2016 · There is an excellent book by Neal Koblitz "p-adic numbers, p-adic analysis and zeta-functions" were the Dwork's proof is stated in a very detailed way, including all … WebDwork’s conjecture on unit root zeta functions By DaqingWan* 1. Introduction In this article, we introduce a systematic new method to investigate the conjectural p-adic meromorphic …
Dwork conjecture
Did you know?
WebSep 23, 2013 · Using Dwork's theory, we prove a broad generalisation of his famous p-adic formal congruences theorem. This enables us to prove certain p-adic congruences for … WebDWORK'S CONJECTURE THEOREM 1.1. For every integer k, the kth unit root zeta function L(Unk, T) is p-adic meromorphic. The general tool for p-adic meromorphic continuation of L-functions is to use Dwork's trace formula. It expresses the unit root zeta function as an alter-nating product of the Fredholm determinants of several continuous …
WebThe subject languished until the recent work of Chiarellotto and Tsuzuki [CT06]; inspired by this, André [And07] proved a conjecture of Dwork [Dwo73b, Conjecture 2] analogizing the specialization ... WebKloosterman sums [17]. Dwork’s unit root conjecture [8] is the following: Conjecture (Dwork). For every integer k, the unit root zeta function L(U›k n;T) is p-adic meromorphic. For a so-called overconvergent F-crystal, the L-function is always mero-morphic by Dwork’s trace formula. The di–culty about this conjecture is that the unit ...
WebIn algebraic geometry, a Dwork family is a one-parameter family of hypersurfaces depending on an integer n, studied by Bernard Dwork.Originally considered by Dwork in … WebMar 1, 2008 · Dwork’s conjecture on the logarithmic growth of solutions of p-adic differential equations - Volume 144 Issue 2 Skip to main content Accessibility help We use cookies to distinguish you from other users and to provide you with a …
WebOct 24, 2024 · 1La conjecture de Weil. II. Inst. Hautes Etudes Sci. Publ. Math. No. 52 ... The methods of Dwork are p-adic. For Xa non-singular hypersurface in a projective space they also provided him with a cohomological interpretation of the zeros and poles, and the functional equation. They inspired the crystalline theory of Grothendieck and
WebIn the higher rank paper [17], we reduced Dwork’s conjecture from higher rank case over any smooth affine variety Xto the rank one case over the simplest affine space An. In the present paper, we finish our proof by proving the rank one case of Dwork’s conjecture over the affine space An, which is called the key lemma in [17]. how far is mena ark from poteau okWebLes conjectures de Weil ont largement influencé les géomètres algébristes depuis 1950 ; elles seront prouvées par Bernard Dwork, Alexandre Grothendieck (qui, pour s'y attaquer, mit sur pied un gigantesque programme visant à transférer les techniques de topologie algébrique en théorie des nombres), Michael Artin et enfin Pierre Deligne ... high blood pressure hydroxyzineWeb开馆时间:周一至周日7:00-22:30 周五 7:00-12:00; 我的图书馆 high blood pressure how to reduceWebJul 31, 2024 · The Bombieri–Dwork conjecture, also attributed to Yves André, which is given in more than one version, postulates a converse direction: solutions as G-functions, or p-curvature nilpotent mod p for almost all primes p, means an equation "arises from geometry". See also. Mirror symmetry conjecture; Mixed Hodge module; Meromorphic … how far is mena ar from little rock arWebWhether or not I succeeded in doing so - or producing anything novel in the process - I cannot say for sure (probably not), but if it'd be helpful here is a copy: On a Theorem of … high blood pressure hydroWebSelect search scope, currently: catalog all catalog, articles, website, & more in one search; catalog books, media & more in the Stanford Libraries' collections; articles+ journal articles & other e-resources high blood pressure how to lower fastWebJul 1, 2024 · Dwork defined the log-growth Newton polygons of system (1.1) which presents the data of log-growth of all solutions of (1.1) at x = 0 and x = t. Moreover Dwork conjectured the following: Conjecture 1.3 [7, Conjecture 2] The log-growth Newton polygon at x = 0 is above the log-growth Newton polygon at x = t. how far is mena ar from hot springs ar